Medical image informatics in e-Health: Towards quantitative radiology

A/Prof Stephen Rose
CSIRO – The Australian e-Health Research Centre
Royal Brisbane and Women’s Hospital
Challenges for medical imaging

How to make expensive diagnostic technology more cost effective?

Employ innovative, cloud-based medical image informatics to better harness the wealth of information about pathology on medical images.

-> Provide quantitative clinical reports / clinical decision support tools to improve patient management and hospital workflows.
Medical informatics research programs at AeHRC

Detecting liver pathologies

Quantitative clinical reports - neuro

Quantitative clinical reports - MSK

Aneurysm detection

MRI lung function assessment

Image-guided therapy for brain cancer

Improving prostate treatment toxicity

Improved radiation treatment planning using MRI
Quantitative clinical reports for MRI and PET imaging

- Ageing and dementia: the tsunami to hit the health system
 - 342,800 Australians living with dementia costing the health care system ($5b in 2009/10)
 - Within 2 decades, dementia will become the third greatest source of health expenditure
 - Without effective treatment, 900,000 Australians are predicted to have dementia by 2050

- The need for quantitative radiology!
 - To improve the accuracy of diagnosis of dementia (AD, FTD, vascular dementia, DLB, CJD, Korsakoff, HIV-related cognitive decline, MCI)
 - Identify individuals at high risk of developing dementia for early lifestyle interventions and commencement of new therapeutics
 - Identify patients that will respond to cognitive enhancing drugs (cost >$100M per year to the PBS)
Quantitative clinical reports for MRI and PET imaging

Imaging the pathological features of dementia

Cost of amyloid and tau PET scans $3000 - $8000 highlights the need for quantitative reporting of medical images
Quantitative clinical reports for MRI and PET imaging

- Need for quantitative reporting of amyloid burden

Florbetapir amyloid PET tracer (rebate in the US)
Quantitative clinical reports for MRI and PET imaging

- Need for quantitative reporting of amyloid burden

Florbetapir amyloid PET tracer (rebate in the US)
CapAIBL: cloud-based Computational Analysis of PET from AIBL
CurAIBL: cloud-based Computational quantification of MRI from AIBL

Pierrick Bourgeat
Vincent Doré
Jurgen Fripp
Olivier Salvado
Chris Rowe
Victor Villemagne
Cloud-based clinical decision support tools

iAssessCP: neuroimaging Assessment e-toolbox for Cerebral Palsy

- Novel tablet based platform for quantitative characterisation of brain injury for planning and monitoring of rehabilitation therapy
Cloud-based clinical decision support tools for CP

- CP is an early brain injury (~70% in the 3rd trimester)
- The most common cause of physical disability in children ~38,000
- Cost on the Australian health budget is $1.5b per year
- While early injury is static, functional problems are progressive, although physical disability can be alleviated by appropriate choice of rehabilitation
- Early diagnosis is important for increasing the window of opportunity for intervention
- The American Academy of Neurology recommends that a brain MRI should form part of the diagnosis of CP at 2 years of age
- Currently there are no automated clinical reporting methods for the quantification of brain injury for CP
- Measures of brain injury must correlate with physical ability (motor function)
iAssessCP: neuroimaging Assessment e-toolbox for Cerebral Palsy

Semi-quantitative scale for the classification of brain injury
-> pencil and paper approach

Disadvantages:
• Time consuming and requires an expert child neurologist
• Uses a single score to describe complex brain injury

Fiori et al., DMCN 2014
iAssessCP: neuroimaging Assessment e-toolbox for Cerebral Palsy

Technical challenge for automated assessment of brain injury for CP

- Injury is heterogeneous
- Can range from minor to severe in some cases
- Injury is anatomically complex; can affect multiple brain regions

![Mild PWM](image1)
![Severe PWM](image2)
![CDGM](image3)

mild PWM severe PWM CDGM
iAssessCP: neuroimaging **Assessment** e-toolbox for **Cerebral Palsy**

- Quantification of periventricular white matter injury (PWM)
 - Developed the concept of using ventricular volume and shape to describe the extent of injury to WM and important deep GM structures which control motor function.

AeHRC Colloquium 2015

Nick Dowson
Alex Pagnozzi
James Doecke
Roslyn Boyd
iAssessCP: neuroimaging Assessment e-toolbox for Cerebral Palsy

- Ventricular shape model for quantitation of PWM injury
 - compare ventricular shape of the patient to a large database of normative control data

- Change in ventricular shape (distance from healthy) is significantly correlated with motor, executive function and vision and communication skills

AeHRC Colloquium 2015

Nick Dowson
Alex Pagnozzi
James Doecke
Roslyn Boyd
iAssessCP: neuroimaging *Assessment* e-toolbox for Cerebral Palsy

- Quantification of cortical and deep grey matter (CDGM)

 - Developing automated methods for segmentation of the cortical mantle to fully characterise the extent of cortical injury

Nick Dowson
Alex Pagnozzi
James Doecke
Roslyn Boyd
iAssessCP: neuroimaging Assessment e-toolbox for Cerebral Palsy

- Quantification of cortical and deep grey matter (CDGM)

- Automatically generate quantitative markers of cortical injury (sulcal curvature, sulcal depth and cortical thickness) to fully characterise the extent of cortical injury

WORK IN PROGRESS

Nick Dowson
Alex Pagnozzi
James Doecke
Roslyn Boyd
Summary

- How to make expensive diagnostic technology more cost effective?

- Need to better harness the opportunity afforded by new imaging technology for capturing exquisite information about injury and disease by moving towards a model of quantitative reporting of MRI and PET images.
 -> provides more information to the clinician to improve diagnosis, patient management and workflows.
Acknowledgements

CSIRO
Olivier Salvado
Jurgen Fripp
Nick Dowson
Pierrick Bourgeat
Vincent Doré
Alex Pagnozzi
Lee Reid
James Doecke
David Rivest-Henault
KaiKai Shen
Jason Dowling
Jhimli Mitra
Soumya Ghose

QCPRRC
Roslyn Boyd

AIBL study team
Chris Rowe
Victor Vilemagne

19 |